Seminar series
Date
Tue, 09 Oct 2018
16:00
Location
L5
Speaker
Joel David Hamkins
Organisation
Oxford University

Abstract: The universal algorithm is a Turing machine program that can in principle enumerate any finite sequence of numbers, if run in the right model of PA, and furthermore, can always enumerate any desired extension of that sequence in a suitable end-extension of that model. The universal finite set is a set-theoretic analogue, a locally verifiable definition that can in principle define any finite set, in the right model of set theory, and can always define any desired finite extension of that set in a suitable top-extension of that model. Recent work has uncovered a $\Sigma_1$-definable version that works with respect to end-extensions. I shall give an account of all three results, which have a parallel form, and describe applications to the model theory of arithmetic and set theory. Post questions and commentary on my blog at http://jdh.hamkins.org/parallels-in-universality-oxford-math-logic-semi…;

Last updated on 3 Apr 2022, 1:32am. Please contact us with feedback and comments about this page.