Tropically constructed Lagrangians in mirror quintic threefolds

25 February 2019
14:15
Cheuk Yu Mak
Abstract

In this talk, we will explain how to construct embedded closed Lagrangian submanifolds in mirror quintic threefolds using tropical curves and the toric degeneration technique. As an example, we will illustrate the construction for tropical curves that contribute to the Gromov–Witten invariant of the line class of the quintic threefold. The construction will in turn provide many homologous and non-Hamiltonian isotopic Lagrangian
rational homology spheres, and a geometric interpretation of the multiplicity of a tropical curve as the weight of a Lagrangian. This is a joint work with Helge Ruddat.

 

  • Geometry and Analysis Seminar