Author
Lee, T
Bowman, C
Roberts, D
Journal title
PeerJ
DOI
10.7287/peerj.preprints.3095v1
Last updated
2024-03-24T04:27:46.327+00:00
Abstract
Extinction models vary in the information they require, the simplest considering the rate of certain sightings only. More complicated methods include uncertain sightings and allow for variation in the reliability of uncertain sightings. Generally extinction models require expert opinion, either as a prior belief that a species is extinct, or to establish the quality of a sighting record, or both. Is this subjectivity necessary? We present two models to explore whether the individual quality of sightings, judged by experts, is strongly informative of the probability of extinction: the `quality breakpoint method' and the `quality as variance method'. For the first method we use the Barbary lion as an exemplar. For the second method we use the Barbary lion, Alaotra grebe, Jamaican petrel and Pohnpei starling as exemplars. The `quality breakpoint method' uses certain and uncertain sighting records, and the quality of uncertain records, to establish whether a change point in the rate of sightings can be established using a simultaneous Bayesian optimisation with a non-informative prior. For the Barbary lion, there is a change in subjective quality of sightings around 1930. Unexpectedly sighting quality increases after this date. This suggests that including quality scores from experts can lead to irregular effects and may not offer reliable results. As an alternative, we use quality as a measure of variance around the sightings, not a change in quality. This leads to predictions with larger standard deviations, however the results remain consistent across any prior belief of extinction. Nonetheless, replacing actual quality scores with random quality scores showed little difference, inferring that the quality scores from experts are superfluous. Therefore, we deem the expensive process of obtaining pooled expert estimates as unnecessary and even when used we recommend that sighting data should have minimal input from experts in terms of assessing the sighting quality at a fine scale. Rather, sightings should be classed as certain or uncertain, using a framework that is as independent of human bias as possible.
Symplectic ID
948434
Favourite
Off
Publication type
Journal Article
Publication date
11 Aug 2017
Please contact us with feedback and comments about this page. Created on 29 Nov 2018 - 20:39.