Direct solvers for the Lippmann-Schwinger equation

12 February 2019
Abinand Gopal

In recent years, there has been an increased interest in exploiting rank structure of matrices arising from the discretization of partial differential equations to develop fast direct solvers. In this talk, I will outline the fundamental ideas of this topic in the context of solving the integral equation formulation of the Helmholtz equation, known as the Lippmann-Schwinger equation, and will discuss some plans for future work to develop new, higher-order solvers. This is joint work with Gunnar Martinsson.

  • Numerical Analysis Group Internal Seminar