Identifying chondrogenesis strategies for tissue engineering of articular cartilage.

Author: 

Chen, M
Whiteley, J
Please, C
Ehlicke, F
Waters, S
Byrne, H

Publication Date: 

January 2019

Journal: 

Journal of tissue engineering

Last Updated: 

2019-09-19T00:32:33.09+01:00

Volume: 

10

DOI: 

10.1177/2041731419842431

page: 

2041731419842431-

abstract: 

A key step in the tissue engineering of articular cartilage is the chondrogenic differentiation of mesenchymal stem cells (MSCs) into chondrocytes (native cartilage cells). Chondrogenesis is regulated by transforming growth factor-β (TGF-β), a short-lived cytokine whose effect is prolonged by storage in the extracellular matrix. Tissue engineering applications aim to maximise the yield of differentiated MSCs. Recent experiments involve seeding a hydrogel construct with a layer of MSCs lying below a layer of chondrocytes, stimulating the seeded cells in the construct from above with exogenous TGF-β and then culturing it in vitro. To investigate the efficacy of this strategy, we develop a mathematical model to describe the interactions between MSCs, chondrocytes and TGF-β. Using this model, we investigate the effect of varying the initial concentration of TGF-β, the initial densities of the MSCs and chondrocytes, and the relative depths of the two layers on the long-time composition of the tissue construct.

Symplectic id: 

983332

Submitted to ORA: 

Submitted

Publication Type: 

Journal Article