Date
Mon, 13 May 2019
Time
15:45 - 16:45
Location
L3
Speaker
WEIJUN XU
Organisation
University of Oxford

Many singular stochastic PDEs are expected to be universal objects that govern a wide range of microscopic models in different universality classes. Two notable examples are KPZ and \Phi^4_3. In these cases, one usually finds a parameter in the system, and tunes according to the space-time scale in such a way that the system rescales to the SPDE in the large-scale limit. We justify this belief for a large class of continuous microscopic growth models (for KPZ) and phase co-existence models (for Phi^4_3), allowing microscopic nonlinear mechanisms far beyond polynomials. Aside from the framework of regularity structures, the main new ingredient is a moment bound for general nonlinear functionals of Gaussians. This essentially allows one to reduce the problem of a general function to that of a polynomial. Based on a joint work with Martin Hairer, and another joint work in progress with Chenjie Fan and Jiawei Li. 

Last updated on 3 Apr 2022, 1:32am. Please contact us with feedback and comments about this page.