Equivariant Simplicial Reconstruction

30 October 2019
Naya Yerolemou

We will answer the following question: given a finite simplicial complex X acted on by a finite group G, which object stores the minimal amount of information about the symmetries of X in such a way that we can reconstruct both X and the group action? The natural first guess would be the quotient X/G, which remembers one representative from each orbit. However, it does not tell us the size of each orbit or how to glue together simplices to recover X. Our desired object is, in fact, a complex of groups. We will understand two processes: compression and reconstruction and see primarily through an example how to answer our initial question.

  • Junior Topology and Group Theory Seminar