Author
Harrington, H
Mehta, D
Byrne, H
Hauenstein, J
Journal title
MC 2019: Maple in Mathematics Education and Research
DOI
10.1007/978-3-030-41258-6_9
Last updated
2024-04-07T20:52:08.13+01:00
Page
114-131
Abstract
Many systems in biology (as well as other physical and engineering systems) can be described by systems of ordinary differential equation containing large numbers of parameters. When studying the dynamic behavior of these large, nonlinear systems, it is useful to identify and characterize the steady-state solutions as the model parameters vary, a technically challenging problem in a high-dimensional parameter landscape. Rather than simply determining the number and stability of steady-states at distinct points in parameter space, we decompose the parameter space into finitely many regions, the number and structure of the steady-state solutions being consistent within each distinct region. From a computational algebraic viewpoint, the boundary of these regions is contained in the discriminant locus. We develop global and local numerical algorithms for constructing the discriminant locus and classifying the parameter landscape. We showcase our numerical approaches by applying them to molecular and cell-network models.
Symplectic ID
1061282
Favourite
Off
Publication type
Conference Paper
ISBN-13
978-3-030-41257-9
Publication date
28 Feb 2020
Please contact us with feedback and comments about this page. Created on 08 Oct 2019 - 11:51.