Limit Groups and Real Trees

19 February 2020
Jonathan Fruchter

Limit groups are a powerful tool in the study of free and hyperbolic groups (and even broader classes of groups). I will define limit groups in various ways: algebraic, logical and topological, and draw connections between the different definitions. We will also see how one can equip a limit group with an action on a real tree, and analyze this action using the Rips machine, a generalization of Bass-Serre theory to real trees. As a conclusion, we will obtain that hyperbolic groups whose outer automorphism group is infinite, split non-trivially as graphs of groups.

  • Junior Topology and Group Theory Seminar