The central sphere of a gravitational instanton

10 March 2020
12:00
Prof Nigel Hitchin
Abstract

The asymptotically locally Euclidean Ricci-flat self-dual 4-manifolds were classified and constructed by Kronheimer as hyperkahler quotients. Each belongs to a finite-dimensional family and a particularly interesting subfamily consists of manifolds with a circle action which can be identified with the minimal resolution of a quotient singularity C^2/G where G is a finite subgroup of SU(2). The resolved singularity is a configuration of rational curves and there is a distinguished one which is pointwise fixed by the circle action. The talk will give an explicit description of the induced metric on this central sphere, and involves twistor theory and the geometry of the lines on a cubic surface.