Author
Bischoff, F
Gualtieri, M
Zabzine, M
Last updated
2023-07-31T16:51:07.41+01:00
Abstract
We solve the problem of determining the fundamental degrees of freedom underlying a generalized Kähler structure of symplectic type. For a usual Kähler structure, it is well-known that the geometry is determined by a complex structure, a Kähler class, and the choice of a positive (1,1)-form in this class, which depends locally on only a single real-valued function: the Kähler potential. Such a description for generalized Kähler geometry has been sought since it was discovered in 1984. We show that a generalized Kähler structure of symplectic type is determined by a pair of holomorphic Poisson manifolds, a holomorphic symplectic Morita equivalence between them, and the choice of a positive Lagrangian brane bisection, which depends locally on only a single real-valued function, which we call the generalized Kähler potential. Our solution draws upon, and specializes to, the many results in the physics literature which solve the problem under the assumption (which we do not make) that the Poisson structures involved have constant rank. To solve the problem we make use of, and generalize, two main tools: the first is the notion of symplectic Morita equivalence, developed by Weinstein and Xu to study Poisson manifolds; the second is Donaldson's interpretation of a Kähler metric as a real Lagrangian submanifold in a deformation of the holomorphic cotangent bundle.
Symplectic ID
1083876
Favourite
Off
Publication type
59
Publication date
17 Dec 2020
Please contact us with feedback and comments about this page. Created on 29 Jan 2020 - 20:09.