Author
Ma, Z
Niu, B
Phan, T
StensjØen, A
Ene, C
Woodiwiss, T
Wang, T
Maini, P
Holland, E
Tian, J
Journal title
Scientific Reports
DOI
10.1038/s41598-020-63394-w
Volume
10
Last updated
2024-03-24T16:06:41.95+00:00
Abstract
Glioblastomas are highly malignant brain tumors. Knowledge of growth rates and growth patterns is useful for understanding tumor biology and planning treatment logistics. Based on untreated human glioblastoma data collected in Trondheim, Norway, we first fit the average growth to a Gompertz curve, then find a best fitted white noise term for the growth rate variance. Combining these two fits, we obtain a new type of Gompertz diffusion dynamics, which is a stochastic differential equation (SDE). Newly collected untreated human glioblastoma data in Seattle, US, re-verify our model. Instead of growth curves predicted by deterministic models, our SDE model predicts a band with a center curve as the tumor size average and its width as the tumor size variance over time. Given the glioblastoma size in a patient, our model can predict the patient survival time with a prescribed probability. The survival time is approximately a normal random variable with simple formulas for its mean and variance in terms of tumor sizes. Our model can be applied to studies of tumor treatments. As a demonstration, we numerically investigate different protocols of surgical resection using our model and provide possible theoretical strategies.
Symplectic ID
1097569
Favourite
Off
Publication type
Journal Article
Publication date
20 Apr 2020
Please contact us with feedback and comments about this page. Created on 30 Mar 2020 - 15:50.