Author
Carrillo de la Plata, J
Mateu, J
Mora, M
Rondi, L
Scardia, L
Verdera, J
Journal title
Communications in Mathematical Physics
DOI
10.1007/s00220-019-03368-w
Issue
2
Volume
373
Last updated
2021-10-22T05:37:29.39+01:00
Page
507-524
Abstract
In this paper we consider a nonlocal energy Iα whose kernel is obtained by adding to the Coulomb potential an anisotropic term weighted by a parameter α∈R. The case α = 0 corresponds to purely logarithmic interactions, minimised by the circle law; α = 1 corresponds to the energy of interacting dislocations, minimised by the semi-circle law. We show that for α∈(0,1) the minimiser is the normalised characteristic function of the domain enclosed by the ellipse of semi-axes 1−α−−−−−√ and 1+α−−−−−√. This result is one of the very few examples where the minimiser of a nonlocal anisotropic energy is explicitly computed. For the proof we borrow techniques from fluid dynamics, in particular those related to Kirchhoff’s celebrated result that domains enclosed by ellipses are rotating vortex patches, called Kirchhoff ellipses.
Symplectic ID
1098228
Favourite
On
Publication type
Journal Article
Publication date
24 Apr 2019
Please contact us for feedback and comments about this page. Created on 02 Apr 2020 - 13:05.