Summing scalar Feynman diagrams

12 May 2020
Hadleigh Frost

A motivation in the development of string theory was the 'duality' flip, exchanging the s- and t-channels, which relates all the cubic Feynman graphs at each order in perturbation theory, with fixed planar structure. In string theory, we can understand this as coming from the moduli spaces of marked surfaces, with the cubic diagrams corresponding to complete triangulations. I will describe how geometric-type cluster algebras give a surprising 'linear' way to talk about the same combinatorial problem, using results from work with N Arkani-Hamed and H Thomas and G Salvatori. This gives new ways to compute cubic scalar amplitudes, and new families of integrals generalizing the Veneziano amplitude.


The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).