Seminar series
Date
Wed, 27 May 2020
Time
16:00 - 17:30
Location
Virtual
Speaker
Ali Enayat
Organisation
University of Gothenburg

Leibniz’s principle of identity of indiscernibles at first sight appears completely unrelated to set theory, but Mycielski (1995) formulated a set-theoretic axiom nowadays referred to as LM (for Leibniz-Mycielski) which captures the spirit of Leibniz’s dictum in the following sense:  LM holds in a model M of ZF iff M is elementarily equivalent to a model M* in which there is no pair of indiscernibles.  LM was further investigated in a 2004  paper of mine, which includes a proof that LM is equivalent to the global form of the Kinna-Wagner selection principle in set theory.  On the other hand, one can formulate a strong negation of Leibniz’s principle by first adding a unary predicate I(x) to the usual language of set theory, and then augmenting ZF with a scheme that ensures that I(x) describes a proper class of indiscernibles, thus giving rise to an extension ZFI of ZF that I showed (2005) to be intimately related to Mahlo cardinals of finite order. In this talk I will give an expository account of the above and related results that attest to a lively interaction between set theory and Leibniz’s principle of identity of indiscernibles.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.