Date
Tue, 27 Oct 2020
12:00
Location
Virtual
Speaker
Nick Mavromatos
Organisation
Kings College London

I discuss a ``running vacuum cosmological model'' of a string-inspired
Universe, in which gravitational anomalies play an important role, in
inducing, through condensates of primordial gravitational waves, an early de
Sitter inflationary phase, during which constant (in cosmic time)
backgrounds of the antisymmetric (Kalb-Ramond (KR)) tensor field of the
massless bosonic string multiplet remain undiluted until the exit from
inflation and well into the subsequent radiation era. During the radiation
phase, such backgrounds, which violate spontaneously Lorentz and CPT
symmetry, induce lepton asymmetry (Leptogenesis) in models involving
right-handed neutrinos. Chiral matter is generated in the model at the exit
phase of inflation, and this leads to the cancellation of gravitational
anomalies in the post inflationary universe. During the radiation era, non
perturbative effects can also be held responsible for the generation of a

potential for the gravitational axion, associated in (3+1)-dimensions with
the field strength of the KR field, which can thus play the role of a Dark
Matter component. In the talk, I discuss the underlying formalism and argue
in favour of the consistency of a theory with gravitational anomalies in the
early Universe. I connect the energy density of such a universe with that of
the so called ``running-vacuum model'' in which the vacuum energy density is
expressed in terms of even powers of the Hubble parameter, which in general
depends on cosmic time. The gravitational-wave condensate induces a term in
the energy density  proportional to the fourth-power of the Hubble parameter
H^4 , which is responsible for the early de Sitter phase, during which the
Hubble parameter is approximately a constant. I also discuss briefly a
connection of this string inspired model with the Swampland and weak gravity
conjectures and explain how consistency with such conjectures is achieved,
despite the fact that the model is compatible with slow-roll inflationary
phenomenology.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.