Knot cobordisms, bridge index, and torsion in Floer homology

Author: 

Juhasz, A
Miller, M
Zemke, I

Publication Date: 

26 October 2020

Journal: 

Journal of Topology

Last Updated: 

2021-10-11T12:52:33.587+01:00

Issue: 

4

Volume: 

13

DOI: 

10.1112/topo.12170

page: 

1701-1724

abstract: 

<p>Given a connected cobordism between two knots in the 3‐sphere, our main result is an inequality involving torsion orders of the knot Floer homology of the knots, and the number of local maxima and the genus of the cobordism. This has several topological applications: The torsion order gives lower bounds on the bridge index and the band‐unlinking number of a knot, the fusion number of a ribbon knot, and the number of minima appearing in a slice disk of a knot. It also gives a lower bound on the number of bands appearing in a ribbon concordance between two knots. Our bounds on the bridge index and fusion number are sharp for 𝑇𝑝,π‘ž and 𝑇𝑝,π‘ž#π‘‡βŽ―βŽ―βŽ―π‘,π‘ž , respectively. We also show that the bridge index of 𝑇𝑝,π‘ž is minimal within its concordance class.</p>

<p>The torsion order bounds a refinement of the cobordism distance on knots, which is a metric. As a special case, we can bound the number of band moves required to get from one knot to the other. We show that knot Floer homology also gives a lower bound on Sarkar's ribbon distance, and exhibit examples of ribbon knots with arbitrarily large ribbon distance from the unknot.</p>

Symplectic id: 

1131467

Submitted to ORA: 

Submitted

Publication Type: 

Journal Article