Stochastic rounding for parabolic PDEs in half precision

20 October 2020
14:00
Abstract

Motivated by the advent of machine learning, the last few years saw the return of hardware-supported low-precision computing. Computations with fewer digits are faster and more memory and energy efficient, but can be extremely susceptible to rounding errors. An application that can largely benefit from the advantages of low-precision computing is the numerical solution of partial differential equations (PDEs), but a careful implementation and rounding error analysis are required to ensure that sensible results can still be obtained. In this talk we study the accumulation of rounding errors in the solution of the heat equation, a proxy for parabolic PDEs, via Runge-Kutta finite difference methods using round-to-nearest (RtN) and stochastic rounding (SR). We demonstrate how to implement the numerical scheme to reduce rounding errors and we present \emph{a priori} estimates for local and global rounding errors. Let $u$ be the roundoff unit. While the worst-case local errors are $O(u)$ with respect to the discretization parameters, the RtN and SR error behaviour is substantially different. We show that the RtN solution is discretization, initial condition and precision dependent, and always stagnates for small enough $\Delta t$. Until stagnation, the global error grows like $O(u\Delta t^{-1})$. In contrast, the leading order errors introduced by SR are zero-mean, independent in space and mean-independent in time, making SR resilient to stagnation and rounding error accumulation. In fact, we prove that for SR the global rounding errors are only $O(u\Delta t^{-1/4})$ in 1D and are essentially bounded (up to logarithmic factors) in higher dimensions.

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please send email to trefethen@maths.ox.ac.uk.

  • Numerical Analysis Group Internal Seminar