Scaling limits of the two- and three-dimensional uniform spanning trees

20 October 2020
09:00
David Croydon

Further Information: 

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

I will introduce recent work on the two- and three-dimensional uniform spanning trees (USTs) that establish the laws of these random objects converge under rescaling in a space whose elements are measured, rooted real trees, continuously embedded into Euclidean space. (In the three-dimensional case, the scaling result is currently only known along a particular scaling sequence.) I will also discuss various properties of the intrinsic metrics and measures of the limiting spaces, including their Hausdorff dimension, as well as the scaling limits of the random walks on the two- and three-dimensional USTs. In the talk, I will attempt to emphasise where the differences lie between the two cases, and in particular the additional challenges that arise when it comes to the three-dimensional model.
    The two-dimensional results are joint with Martin Barlow (UBC) and Takashi Kumagai (Kyoto). The three-dimensional results are joint with Omer Angel (UBC) and Sarai Hernandez-Torres (UBC).

  • Combinatorial Theory Seminar