Date
Tue, 26 Jan 2021
14:30
Location
Virtual
Speaker
Duygu Sap
Organisation
Department of Engineering Science University of Oxford
In this talk, we describe the methodology for constructing a divergence-free and stable pair of finite element spaces for the Stokes problem on cubical meshes of arbitrary dimension. We use the Stokes complex as a guiding tool. We state and exemplify the general procedure for deriving a divergence-free and stable finite element discretization from a Stokes complex. However, we develop a new strategy to prove the necessary inf-sup stability condition due to the lack of a Fortin operator. In particular, we first derive a local inf-sup condition with imposed boundary conditions and then translate this result to the global level by exploiting the element's degrees of freedom. Furthermore, we derive reduced finite elements with less global degrees of freedom. We show that the optimal order of convergence is achieved via both the original and reduced finite elements for the velocity approximation, and the pressure approximation is of optimal order when the reduced finite elements are used.
 
Ref. Stokes elements on cubic meshes yielding divergence-free approximations, M. Neilan and D. Sap, Calcolo, 53(3):263-283, 2016. 
 
--

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

 

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.