Seminar series
Date
Wed, 10 Mar 2021
Time
16:00 - 17:30
Location
Virtual
Speaker
Peter Koellner
Organisation
Harvard University

Let us say that a theory $T$ in the language of set theory is $\beta$-consistent at $\alpha$ if there is a transitive model of $T$ of height $\alpha$, and let us say that it is $\beta$-categorical at $\alpha$ iff there is at most one transitive model of $T$ of height $\alpha$. Let us also assume, for ease of formulation, that there are arbitrarily large $\alpha$ such that $\mathrm{ZFC}$ is $\beta$-consistent at $\alpha$.

The sentence $\mathrm{VEL}$ has the feature that $\mathrm{ZFC}+\mathrm{VEL}$ is $\beta$-categorical at $\alpha$, for every $\alpha$. If we assume in addition that $\mathrm{ZFC}+\mathrm{VEL}$ is $\beta$-consistent at $\alpha$, then the uniquely determined model is $L_\alpha$, and the minimal such model, $L_{\alpha_0}$, is model of determined by the $\beta$-categorical theory $\mathrm{ZFC}+\mathrm{VEL}+M$, where $M$ is the statement "There does not exist a transitive model of $\mathrm{ZFC}$."

It is natural to ask whether $\mathrm{VEL}$ is the only sentence that can be $\beta$-categorical at $\alpha$; that is, whether, there can be a sentence $\phi$ such that $\mathrm{ZFC}+\phi$ is $\beta$-categorical at $\alpha$, $\beta$-consistent at $\alpha$, and where the unique model is not $L_\alpha$.  In the early 1970s Harvey Friedman proved a partial result in this direction. For a given ordinal $\alpha$, let $n(\alpha)$ be the next admissible ordinal above $\alpha$, and, for the purposes of this discussion, let us say that an ordinal $\alpha$ is minimal iff a bounded subset of $\alpha$ appears in $L_{n(\alpha)}\setminus L_\alpha$. [Note that $\alpha_0$ is minimal (indeed a new subset of $\omega$ appears as soon as possible, namely, in a $\Sigma_1$-definable manner over $L_{\alpha_0+1}$) and an ordinal $\alpha$ is non-minimal iff $L_{n(\alpha)}$ satisfies that $\alpha$ is a cardinal.] Friedman showed that for all $\alpha$ which are non-minimal, $\mathrm{VEL}$ is the only sentence that is $\beta$-categorical at $\alpha$. The question of whether this is also true for $\alpha$ which are minimal has remained open.

In this talk I will describe some joint work with Hugh Woodin that bears on this question. In general, when approaching a "lightface" question (such as the one under consideration) it is easier to first address the "boldface" analogue of the question by shifting from the context of $L$ to the context of $L[x]$, where $x$ is a real. In this new setting everything is relativized to the real $x$: For an ordinal $\alpha$, we let $n_x(\alpha)$ be the first $x$-admissible ordinal above $\alpha$, and we say that $\alpha$ is $x$-minimal iff a bounded subset of $\alpha$ appears in $L_{n_x(\alpha)}[x]\setminus L_{\alpha}[x]$.

Theorem. Assume $M_1^\#$ exists and is fully iterable. There is a sentence $\phi$ in the language of set theory with two additional constants, \r{c} and \r{d}, such that for a Turing cone of $x$, interpreting \r{c} by $x$, for all $a$

  1. if $L_\alpha[x]\vDash\mathrm{ZFC}$ then there is an interpretation of \r{d}  by something in $L_\alpha[x]$ such that there is a $\beta$-model of $\mathrm{ZFC}+\phi$ of height $\alpha$ and not equal to $L_\alpha[x]$, and
  2. if, in addition, $\alpha$ is $x$-minimal, then there is a unique $\beta$-model of $\mathrm{ZFC}+\phi$ of height $\alpha$ and not equal to $L_\alpha[x]$.

The sentence $\phi$ asserts the existence of an object which is external to $L_\alpha[x]$ and which, in the case where $\alpha$ is minimal, is canonical. The object is a branch $b$ through a certain tree in $L_\alpha[x]$, and the construction uses techniques from the HOD analysis of models of determinacy.

In this talk I will sketch the proof, describe some additional features of the singleton, and say a few words about why the lightface version looks difficult.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.