Asymptotic Cones and the Filling Order of a Metric Space

3 February 2021
10:00
Patrick Nairne
Abstract

The asymptotic cone of a metric space X is what you see when you "look at X from infinitely far away". The asymptotic cone therefore captures much of the large scale geometry of the metric space. Furthermore, the construction often produces a smooth space from a discrete one, allowing us to apply the techniques of calculus. Notably, Gromov used asymptotic cones in his proof that finitely generated groups of polynomial growth are virtually nilpotent.

In the talk I will define asymptotic cones using the language of ultrafilters and ultralimits. We will then look at the particular cases of asymptotic cones of virtually nilpotent groups and hyperbolic metric spaces. At the end, we will prove a result of Gromov which relates the fundamental group of the asymptotic cone to the filling order of the underlying metric space.

  • Junior Topology and Group Theory Seminar