Some unusual extremal problems in convexity and combinatorics

16 February 2021
15:30
Ramon van Handel

Further Information: 

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

It is a basic fact of convexity that the volume of convex bodies is a polynomial, whose coefficients contain many familiar geometric parameters as special cases. A fundamental result of convex geometry, the Alexandrov-Fenchel inequality, states that these coefficients are log-concave. This proves to have striking connections with other areas of mathematics: for example, the appearance of log-concave sequences in many combinatorial problems may be understood as a consequence of the Alexandrov-Fenchel inequality and its algebraic analogues.

There is a long-standing problem surrounding the Alexandrov-Fenchel inequality that has remained open since the original works of Minkowski (1903) and Alexandrov (1937): in what cases is equality attained? In convexity, this question corresponds to the solution of certain unusual isoperimetric problems, whose extremal bodies turn out to be numerous and strikingly bizarre. In combinatorics, an answer to this question would provide nontrivial information on the type of log-concave sequences that can arise in combinatorial applications. In recent work with Y. Shenfeld, we succeeded to settle the equality cases completely in the setting of convex polytopes. I will aim to describe this result, and to illustrate its potential combinatorial implications through a question of Stanley on the combinatorics of partially ordered sets.

  • Combinatorial Theory Seminar