On the quantization of Seiberg-Witten geometry

Author: 

Haouzi, N
Oh, J

Publication Date: 

27 January 2021

Journal: 

Journal of High Energy Physics

Last Updated: 

2021-10-11T12:01:32.737+01:00

Issue: 

1

Volume: 

2021

DOI: 

10.1007/jhep01(2021)184

abstract: 

<jats:title>A<jats:sc>bstract</jats:sc>
</jats:title><jats:p>We propose a double quantization of four-dimensional <jats:inline-formula><jats:alternatives><jats:tex-math>$$ \mathcal{N} $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mi>N</mml:mi>
</mml:math></jats:alternatives></jats:inline-formula> = 2 Seiberg-Witten geometry, for all classical gauge groups and a wide variety of matter content. This can be understood as a set of certain non-perturbative Schwinger-Dyson identities, following the program initiated by Nekrasov [1]. The construction relies on the computation of the instanton partition function of the gauge theory on the so-called Ω-background on ℝ<jats:sup>4</jats:sup>, in the presence of half-BPS codimension 4 defects. The two quantization parameters are identified as the two parameters of this background. The Seiberg-Witten curve of each theory is recovered in the flat space limit. Whenever possible, we motivate our construction from type IIA string theory.</jats:p>

Symplectic id: 

1164675

Submitted to ORA: 

Submitted

Publication Type: 

Journal Article