Critical exponents for primitive sets

31 May 2021
Jared Duker Lichtman

A set of positive integers is primitive (or 1-primitive) if no member divides another. Erdős proved in 1935 that the weighted sum $\sum 1/(n\log n)$ for n ranging over a primitive set A is universally bounded over all choices for A. In 1988 he asked if this universal bound is attained by the set of prime numbers. One source of difficulty in this conjecture is that $\sum n^{-\lambda}$ over a primitive set is maximized by the primes if and only if $\lambda$ is at least the critical exponent $\tau_1\approx1.14$.
A set is $k$-primitive if no member divides any product of up to $k$ other distinct members. In joint work with C. Pomerance and T.H. Chan, we study the critical exponent $\tau_k$ for which the primes are maximal among $k$-primitive sets. In particular we prove that $\tau_2<0.8$, which directly implies the Erdős conjecture for 2-primitive sets.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Junior Number Theory Seminar