Tue, 23 Nov 2021
Gonzalo Gonzalez
University of Oxford

Viscous contact problems describe the time evolution of fluid flows in contact with a surface from which they can detach. These type of problems arise in glaciology when, for example, modelling the evolution of the grounding line of a marine ice sheet or the formation of a subglacial cavity. Such problems are generally modelled as a time dependent viscous Stokes flow with a free boundary and contact boundary conditions. Although these applications are of great importance in glaciology, a systematic study of the numerical approximation of viscous contact problems has not been carried out yet. In this talk, I will present some of the challenges that arise when approximating these problems and some of the ideas we have come up with for overcoming them.

Please contact us for feedback and comments about this page. Last updated on 03 Apr 2022 01:32.