Date
Tue, 15 Feb 2022
12:00
Location
Virtual
Speaker
Neil Turok
Organisation
University of Edinburgh and Perimeter Institute

I’ll review a new, simpler explanation for the large-scale properties of the
cosmos, presented with L. Boyle in our recent preprint arXiv:2201.07279. The
basic ingredients are elementary and well-known, namely Einstein’s theory of
gravity and Hawking’s method of computing gravitational entropy. The new
twist is provided by the boundary conditions we proposed for big bang-type
singularities, allowing conformal zeros but imposing CPT symmetry and

analyticity at the bang. These boundary conditions, which have significant
overlap with Penrose’s Weyl curvature hypothesis, allow gravitational
instantons for universes with Lambda, massless radiation and space
curvature, of either sign, from which we are able to infer a gravitational
entropy. We find the gravitational entropy can exceed the de Sitter entropy
and that, to the extent that it does, the most probable large-scale geometry
for the universe is flat, homogeneous and isotropic. I will briefly
summarise our earlier work showing how the gauge-fermion Lagrangian of the
standard model may be reconciled with Weyl symmetry and a small cosmological
constant, at leading order, provided there are precisely three generations
of fermions. The same mechanism generates scale-invariant primordial
perturbations. The cosmic dark matter consists of a right-handed neutrino.
In summary, we have taken significant steps towards a new, highly principled
and testable theory of cosmology.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.