Date
Wed, 02 Mar 2022
Time
13:00 - 16:00
Location
L4
Speaker
Jonathan Tam, Remy Messadene, Julien Berestycki
Organisation
University of Oxford and Imperial College London

1pm Jonathan Tam: Markov decision processes with observation costs

We present a framework for a controlled Markov chain where the state of the chain is only given at chosen observation times and of a cost. Optimal strategies therefore involve the choice of observation times as well as the subsequent control values. We show that the corresponding value function satisfies a dynamic programming principle, which leads to a system of quasi-variational inequalities (QVIs). Next, we give an extension where the model parameters are not known a priori but are inferred from the costly observations by Bayesian updates. We then prove a comparison principle for a larger class of QVIs, which implies uniqueness of solutions to our proposed problem. We utilise penalty methods to obtain arbitrarily accurate solutions. Finally, we perform numerical experiments on three applications which illustrate our framework.

Preprint at https://arxiv.org/abs/2201.07908

 

1.45pm Remy Messadene: signature asymptotics, empirical processes, and optimal transport

Rough path theory provides one with the notion of signature, a graded family of tensors which characterise, up to a negligible equivalence class, and ordered stream of vector-valued data. In the last few years, use of the signature has gained traction in time-series analysis, machine learning, deep learning and more recently in kernel methods. In this work, we lay down the theoretical foundations for a connection between signature asymptotics, the theory of empirical processes, and Wasserstein distances, opening up the landscape and toolkit of the second and third in the study of the first. Our main contribution is to show that the Hambly-Lyons limit can be reinterpreted as a statement about the asymptotic behaviour of Wasserstein distances between two independent empirical measures of samples from the same underlying distribution. In the setting studied here, these measures are derived from samples from a probability distribution which is determined by geometrical properties of the underlying path.

 

2.30-3.00 Tea & coffee in the mezzananie

 

3-4pm Julien Berestycki: Extremal point process of the branching Brownian motion

 

 

 

Further Information

Please contact @email for remote link

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.