Date
Mon, 02 May 2022
14:15
Location
L5
Speaker
Costante Bellettini
Organisation
University College London

Let $N$ be a compact Riemannian manifold of dimension 3 or higher, and $g$ a Lipschitz non-negative (or non-positive) function on $N$. In joint works with Neshan Wickramasekera we prove that there exists a closed hypersurface $M$ whose mean curvature attains the values prescribed by $g$. Except possibly for a small singular set (of codimension 7 or higher), the hypersurface $M$ is $C^2$ immersed and two-sided (it admits a global unit normal); the scalar mean curvature at $x$ is $g(x)$ with respect to a global choice of unit normal. More precisely, the immersion is a quasi-embedding, namely the only non-embedded points are caused by tangential self-intersections: around such a non-embedded point, the local structure is given by two disks, lying on one side of each other, and intersecting tangentially (as in the case of two spherical caps touching at a point). A special case of PMC (prescribed-mean-curvature) hypersurfaces is obtained when $g$ is a constant, in which the above result gives a CMC (constant-mean-curvature) hypersurface for any prescribed value of the mean curvature.

Please contact us with feedback and comments about this page. Last updated on 02 May 2022 09:35.