Date
Mon, 16 May 2005
14:15
Location
DH 3rd floor SR
Speaker
Dr. Martin Barlow
Organisation
University of British Columbia

It is now known that the overall behaviour of a simple random walk (SRW) on

supercritical (p>p_c) percolation cluster in Z^d is similiar to that of the SRW

in Z^d. The critical case (p=p_c) is much harder, and one needs to define the

'incipient infinite cluster' (IIC). Alexander and Orbach conjectured in 1982

that the return probability for the SRW on the IIC after n steps decays like

n^{2/3} in any dimension. The easiest case is that of trees; this was studied by

Kesten in 1986, but we can now revisit this problem with new techniques.

Last updated on 3 Apr 2022, 1:32am. Please contact us with feedback and comments about this page.