Date
Mon, 06 Jun 2005
17:00
Location
L1
Speaker
Georg Dolzmann
Organisation
College Park, Maryland

We derive a two-dimensional compressible elasticity model for thin elastic sheets as a Gamma-limit of a fully three-dimensional incompressible theory. The energy density of the reduced problem is obtained in two

steps: first one optimizes locally over out-of-plane deformations, then one passes to the quasiconvex envelope of the resulting energy density. This work extends the results by LeDret and Raoult on smooth and finite-valued energies to the case incompressible materials. The main difficulty in this extension is the construction of a recovery sequence which satisfies the nonlinear constraint of incompressibility pointwise everywhere.

This is joint work with Sergio Conti.

Last updated on 3 Apr 2022, 1:32am. Please contact us with feedback and comments about this page.