Tue, 29 Nov 2005
DH 3rd floor SR
Prof Alexander Gorban
University of Leicester
The concept of the slow invariant manifold is the central idea underpinning a transition from micro to macro and model reduction in kinetic theories. We present the constructive methods of invariant manifolds for model reduction in physical and chemical kinetics, developed during last two decades. The physical problem of reduced description is studied in the most general form as a problem of constructing the slow invariant manifold. The invariance conditions are formulated as the differential equation for a manifold immersed in the phase space. The equation of motion for immersed manifolds is obtained.

Invariant manifolds are fixed points for this equation, and slow invariant manifolds are Lyapunov stable fixed points, thus slowness is presented as stability.

A collection of methods to derive analytically and to compute numerically the slow invariant manifolds is presented. The systematic use of thermodynamic structures and of the quasi-chemical representation allows us to construct approximations which are in concordance with physical restrictions.

The following examples of applications are presented: Nonperturbative derivation of physically consistent hydrodynamics from the Boltzmann equation and from the reversible dynamics, for nudsen numbers Kn~1; construction of the moment equations for nonequilibrium media and their dynamical correction (instead of extension of the list of variables) in order to gain more accuracy in description of highly nonequilibrium flows; model reduction in chemical kinetics.

Please contact us for feedback and comments about this page. Last updated on 03 Apr 2022 01:32.