11:00
Invariant manifolds are fixed points for this equation, and slow invariant manifolds are Lyapunov stable fixed points, thus slowness is presented as stability.
A collection of methods to derive analytically and to compute numerically the slow invariant manifolds is presented. The systematic use of thermodynamic structures and of the quasi-chemical representation allows us to construct approximations which are in concordance with physical restrictions.
The following examples of applications are presented: Nonperturbative derivation of physically consistent hydrodynamics from the Boltzmann equation and from the reversible dynamics, for nudsen numbers Kn~1; construction of the moment equations for nonequilibrium media and their dynamical correction (instead of extension of the list of variables) in order to gain more accuracy in description of highly nonequilibrium flows; model reduction in chemical kinetics.