Date
Tue, 18 Oct 2022
Time
14:00 - 15:00
Location
L5
Speaker
Paul Balister & Michael Savery
Organisation
Oxford University

A 1-independent bond percolation model on a graph $G$ is a probability distribution on the spanning subgraphs of $G$ in which, for all vertex-disjoint sets of edges $S_1$ and $S_2$, the states (i.e. present or not present) of the edges in $S_1$ are independent of the states of the edges in $S_2$. Such models typically arise in renormalisation arguments applied to independent percolation models, or percolation models with finite range dependencies. A 1-independent model is said to percolate if the random subgraph has an infinite component with positive probability. In 2012 Balister and Bollobás defined $p_{\textrm{max}}(G)$ to be the supremum of those $p$ for which there exists a 1-independent bond percolation model on $G$ in which each edge is present in the random subgraph with probability at least $p$ but which does not percolate. A fundamental and challenging problem in this area is to determine, or give good bounds on, the value of $p_{\textrm{max}}(G)$ when $G$ is the lattice graph $\mathbb{Z}^2$. Since $p_{\textrm{max}}(\mathbb{Z}^n)\leq p_{\textrm{max}}(\mathbb{Z}^{n-1})$, it is also of interest to establish the value of $\lim_{n\to\infty}p_{\textrm{max}}(\mathbb{Z}^n)$.

In this talk we will present a significantly improved upper bound for this limit as well as improved upper and lower bounds for $p_{\textrm{max}}(\mathbb{Z}^2)$. We will also show that with high confidence we have $p_{\textrm{max}}(\mathbb{Z}^n)<p_{\textrm{max}}(\mathbb{Z}^2)$ for large $n$ and discuss some open problems concerning 1-independent models on other graphs.

This is joint work with Tom Johnston and Alex Scott.

Last updated on 12 Oct 2022, 8:50pm. Please contact us with feedback and comments about this page.