Date
Tue, 15 Nov 2022
Time
14:00 - 15:00
Location
L5
Speaker
Maria Axenovich
Organisation
KIT

A graph has a pair $(m,f)$ if it has an induced subgraph on $m$ vertices and $f$ edges. We write $(n,e)\rightarrow (m,f)$  if any graph on $n$ vertices and $e$ edges has a pair $(m,f)$.  Let  $$S(n,m,f)=\{e: ~(n,e)\rightarrow (m,f)\} ~{\rm and}$$     $$\sigma(m,f) =   \limsup_{n\rightarrow \infty}\frac{ |S(n,m,f)|}{\binom{n}{2}}.$$ These notions were first introduced and investigated by Erdős, Füredi, Rothschild, and Sós. They found five pairs $(m,f)$ with  $\sigma(m,f)=1$ and showed that for all other pairs $\sigma(m,f)\leq 2/3$.  We extend these results in two directions.

First, in a joint work with Weber, we show that not only $\sigma(m,f)$ can be zero, but also $S(n,m,f)$  could be empty for some pairs $(m,f)$ and any sufficiently large $n$. We call such pairs $(m,f)$ absolutely avoidable.

Second, we consider a natural analogue $\sigma_r(m,f)$ of $\sigma(m,f)$ in the setting of $r$-uniform hypergraphs.  Weber showed that for any $r\geq 3$ and  $m>r$,  $\sigma_r(m,f)=0$ for most values of $f$.  Surprisingly, it was not immediately clear whether there are nontrivial pairs $(m,f)$,  $(f\neq 0$, $f\neq \binom{m}{r}$,  $r\geq 3$),  for which $\sigma_r(m,f)>0$. In a joint work with Balogh, Clemen, and Weber we show that $\sigma_3(6,10)>0$ and conjecture that in the $3$-uniform case $(6,10)$ is the only such pair.

Please contact us with feedback and comments about this page. Last updated on 13 Oct 2022 09:57.