Date
Tue, 22 Nov 2022
Time
15:30 - 16:30
Location
Virtual
Speaker
Michelle Delcourt
Organisation
Toronto Metropolitan University

In 1973, Erdős conjectured the existence of high girth $(n,3,2)$-Steiner systems. Recently, Glock, Kühn, Lo, and Osthus and independently Bohman and Warnke proved the approximate version of Erdős' conjecture. Just this year, Kwan, Sah, Sawhney, and Simkin proved Erdős' conjecture. As for Steiner systems with more general parameters, Glock, Kühn, Lo, and Osthus conjectured the existence of high girth $(n,q,r)$-Steiner systems. We prove the approximate version of their conjecture. This result follows from our general main results which concern finding perfect or almost perfect matchings in a hypergraph $G$ avoiding a given set of submatchings (which we view as a hypergraph $H$ where $V(H)=E(G)$). Our first main result is a common generalization of the classical theorems of Pippenger (for finding an almost perfect matching) and Ajtai, Komlós, Pintz, Spencer, and Szemerédi (for finding an independent set in girth five hypergraphs). More generally, we prove this for coloring and even list coloring, and also generalize this further to when $H$ is a hypergraph with small codegrees (for which high girth designs is a specific instance). A number of applications in various areas follow from our main results including: Latin squares, high dimensional permutations, and rainbow matchings. This is joint work with Luke Postle.

Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Please contact us with feedback and comments about this page. Last updated on 12 Oct 2022 20:47.