Seminar series
Date
Tue, 27 Nov 2007
11:00
Location
L3
Speaker
Prof. James Vickers
Organisation
University of Southampton

In this talk I will look at a definition of the energy-momentum for the dynamical horizon of a black hole. The talk will begin by examining the role of a special class of observers at null infinity determined by Bramson's concept of frame alignment. It is shown how this is given in terms of asymptotically constant spinor fields and how this framework may be used together with the Nester-Witten two form to give a definition of the Bondi mass at null infinity.

After reviewing Ashtekar's concept of an isolated horizon we will look at the propagation of spinor fields and show how to introduce spinor fields for the horizon which play the role of the asymptotically constant spinor fields at null infinity, giving a concept of alignment of frames on the horizon. It turns out that the equations satisfied by these spinor fields give precisely the Dougan-Mason holomorphic condition on the cross sections of the horizon, together with a simple propagation equation along the generators. When combined with the Nester-Witten 2-form these equations give a quasi-local definition of the mass and momentum of the black hole, as well as a formula for the flux across the horizon. These ideas are then generalised to the case of a dynamical horizon and the results compared to those obtained by Ashtekar as well as to the known answers for a number of exact solutions.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.