Tue, 02 May 2023
Umberto Zerbinati
Universiy of Oxford

We propose a nematic model for polyatomic gas, intending to study anisotropic phenomena. Such phenomena stem from the orientational degree of freedom associated with the rod-like molecules composing the gas. We adopt as a primer the Curitss-Boltzmann equation. The main difference with respect to Curtiss theory of hard convex body fluids is the fact that the model here presented takes into account the emergence of a nematic ordering. We will also derive from a kinetic point of view an energy functional similar to the Oseen-Frank energy. The application of the Noll-Coleman procedure to derive new expressions for the stress tensor and the couple-stress tensor will lead to a model capable of taking into account anisotropic effects caused by the emergence of a nematic ordering. In the near future, we hope to adopt finite-element discretisations together with multi-scale methods to simulate the integro-differential equation arising from our model.

Please contact us for feedback and comments about this page. Last updated on 01 May 2023 18:34.