Date
Mon, 05 Jun 2023
14:15
Location
L4
Speaker
Alix Deruelle
Organisation
Sorbonne Université

Given a 4-dimensional Einstein orbifold that cannot be desingularized by smooth Einstein metrics, we investigate the existence of an ancient solution to the Ricci flow coming out of such a singular space. In this talk, we will focus on singularities modeled on a cone over $\mathbb{R}P^3$ that are desingularized by gluing Eguchi-Hanson metrics to get a first approximation of the flow. We show that a parabolic version of the corresponding obstructed gluing problem has a  smooth solution: the bubbles are shown to grow exponentially in time, a phenomenon that is intimately connected to the instability of such orbifolds. Joint work with Tristan Ozuch.

Last updated on 22 May 2023, 11:51am. Please contact us with feedback and comments about this page.