Date
Tue, 24 Oct 2023
Time
14:00 - 14:30
Location
VC
Speaker
Yohance Osborne
Organisation
UCL

The PDE formulation of Mean Field Games (MFG) is described by nonlinear systems in which a Hamilton—Jacobi—Bellman (HJB) equation and a Kolmogorov—Fokker—Planck (KFP) equation are coupled. The advective term of the KFP equation involves a partial derivative of the Hamiltonian that is often assumed to be continuous. However, in many cases of practical interest, the underlying optimal control problem of the MFG may give rise to bang-bang controls, which typically lead to nondifferentiable Hamiltonians. In this talk we present results on the analysis and numerical approximation of second-order MFG systems for the general case of convex, Lipschitz, but possibly nondifferentiable Hamiltonians.
In particular, we propose a generalization of the MFG system as a Partial Differential Inclusion (PDI) based on interpreting the partial derivative of the Hamiltonian in terms of subdifferentials of convex functions.

We present theorems that guarantee the existence of unique weak solutions to MFG PDIs under a monotonicity condition similar to one that has been considered previously by Lasry & Lions. Moreover, we introduce a monotone finite element discretization of the weak formulation of MFG PDIs and prove the strong convergence of the approximations to the value function in the H1-norm and the strong convergence of the approximations to the density function in Lq-norms. We conclude the talk with some numerical experiments involving non-smooth solutions. 

This is joint work with my supervisor Iain Smears. 

Please contact us with feedback and comments about this page. Last updated on 16 Oct 2023 11:58.