Date
Tue, 14 Nov 2023
Time
15:30 - 16:30
Location
Online
Speaker
Gábor Pete
Organisation
Rényi Institute/Budapest University of Technology and Economics

I will talk about two separate projects where random walks are building a random tree, yielding preferential attachment behaviour from completely local mechanisms.
First, the Tree Builder Random Walk is a randomly growing tree, built by a walker as she is walking around the tree. At each time $n$, she adds a leaf to her current vertex with probability $n^{-\gamma}, \gamma\in(2/3, 1]$, then moves to a uniform random neighbor on the possibly modified tree. We show that the tree process at its growth times, after a random finite number of steps, can be coupled to be identical to the Barabási-Albert preferential attachment tree model. This coupling implies that many properties known for the BA-model, such as diameter and degree distribution, can be directly transferred to our model. Joint work with János Engländer, Giulio Iacobelli, and Rodrigo Ribeiro. Second, we introduce a network-of-networks model for physical networks: we randomly grow subgraphs of an ambient graph (say, a box of $\mathbb{Z}^d$) until they hit each other, building a tree from how these spatially extended nodes touch each other. We compute non-rigorously the degree distribution exponent of this tree in large generality, and provide a rigorous analysis when the nodes are loop-erased random walks in dimension $d=2$ or $d\geq 5$, using a connection with the Uniform Spanning Tree. Joint work with Ádám Timár, Sigurdur Örn Stefánsson, Ivan Bonamassa, and Márton Pósfai. (See https://arxiv.org/abs/2306.01583)

Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Please contact us with feedback and comments about this page. Last updated on 10 Oct 2023 10:52.