Seminar series
          
      Date
              Mon, 29 Jan 2024
      
16:00
          16:00
Location
              L2
          Speaker
              Cédric Pilatte
          Organisation
              University of Oxford
          The Liouville function $\lambda(n)$ is defined to be $+1$ if $n$ is a product of an even number of primes, and $-1$ otherwise. The statistical behaviour of $\lambda$ is intimately connected to the distribution of prime numbers. In many aspects, the Liouville function is expected to behave like a random sequence of $+1$'s and $-1$'s. For example, the two-point Chowla conjecture predicts that the average of $\lambda(n)\lambda(n+1)$ over $n < x$ tends to zero as $x$ goes to infinity. In this talk, I will discuss quantitative bounds for a logarithmic version of this problem.
 
    