Date
Tue, 06 Feb 2024
Time
14:00 - 15:00
Location
L4
Speaker
Robert Hancock
Organisation
University of Oxford

Given a matrix $A$ with integer entries, a subset $S$ of an abelian group and $r\in\mathbb N$, we say that $S$ is $(A,r)$-Rado if any $r$-colouring of $S$ yields a monochromatic solution to the system of equations $Ax=0$. A classical result of Rado characterises all those matrices $A$ such that $\mathbb N$ is $(A,r)$-Rado for all $r \in \mathbb N$. Rödl and Ruciński, and Friedgut, Rödl and Schacht proved a random version of Rado’s theorem where one considers a random subset of $[n]:=\{1,\dots,n\}$.

In this paper, we investigate the analogous random Ramsey problem in the more general setting of abelian groups. Given a sequence $(S_n)_{n\in\mathbb N}$ of finite subsets of abelian groups, let $S_{n,p}$ be a random subset of $S_n$ obtained by including each element of $S_n$ independently with probability $p$. We are interested in determining the probability threshold for $S_{n,p}$ being $(A,r)$-Rado.

Our main result is a general black box for hypergraphs which we use to tackle problems of this type. Using this tool in conjunction with a series of supersaturation results, we determine the probability threshold for a number of different cases. A consequence of the Green-Tao theorem is the van der Waerden theorem for the primes: every finite colouring of the primes contains arbitrarily long monochromatic arithmetic progressions. Using our machinery, we obtain a random version of this result. We also prove a novel supersaturation result for $[n]^d$ and use it to prove an integer lattice generalisation of the random version of Rado's theorem.

This is joint work with Andrea Freschi and Andrew Treglown (both University of Birmingham).

Please contact us with feedback and comments about this page. Last updated on 04 Feb 2024 13:48.