Approximate lattices are aperiodic generalisations of lattices in locally compact groups. They were first introduced in abelian groups by Yves Meyer before being studied as mathematical models for quasi-crystals. Since then their structure has been thoroughly investigated in both abelian and non-abelian settings.
In this talk I will survey what is known of the structure of approximate lattices. I will highlight some objects - such as a notion of cohomology sitting between group cohomology and bounded cohomology - that appear in their study. I will also formulate open problems and conjectures related to approximate lattices.