Seminar series
Date
Tue, 28 May 2024
15:00
Location
L6
Speaker
Patrick Nairne

If a group quasiisometrically embeds into a finite product of infinite valence trees then a number of things are implied; for example, the group will have finite Assouad-Nagata dimension and finite asymptotic dimension. An even stronger statement is that the group quasiisometrically embeds into a finite product of uniformly bounded valence trees. The research on which groups quasiisometrically embed into finite products of uniformly bounded valence trees is limited, however a notable result of Buyalo, Dranishnikov and Schroeder from 2007 proves that all hyperbolic groups do admit these quasiisometric embeddings. In a recently released preprint, I extend their result to cover groups which are relatively hyperbolic with respect to virtually abelian peripheral subgroups. 

This talk will focus on the ideas at the core of Buyalo, Dranishnikov and Schroeder’s result and the extension that I proved, and in particular I will attempt to provide a general framework for upgrading quasiisometric embeddings into infinite valence trees so that they are now quasiisometric embeddings into uniformly bounded valence trees. The central concept is called a diary which I will define. 

Last updated on 24 May 2024, 7:36pm. Please contact us with feedback and comments about this page.