Date
Tue, 14 May 2024
Time
14:00 - 15:00
Location
L4
Speaker
Marc Noy
Organisation
Universitat Politecnica de Catalunya

A cluster graph is a disjoint union of complete graphs. We consider the random $G(n,p)$ graph on $n$ vertices with connection probability $p$, conditioned on the rare event of being a cluster graph. There are three main motivations for our study.

  1. For $p = 1/2$, each random cluster graph occurs with the same probability, resulting in the uniform distribution over set partitions. Interpreting such a partition as a graph adds additional structural information.
  2. To study how the law of a well-studied object like $G(n,p)$ changes when conditioned on a rare event; an evidence of this fact is that the conditioned random graph overcomes a phase transition at $p=1/2$ (not present in the dense $G(n,p)$ model).
  3. The original motivation was an application to community detection. Taking a random cluster graph as a model for a prior distribution of a partition into communities leads to significantly better community-detection performance.

This is joint work with Martijn Gösgens, Lukas Lüchtrath, Elena Magnanini and Élie de Panafieu.

Last updated on 25 Apr 2024, 3:52pm. Please contact us with feedback and comments about this page.