Date
Wed, 12 Jun 2024
Time
16:00 - 17:00
Location
L6
Speaker
Marco Linton
Organisation
University of Oxford

If \(F\) is a free group and \(F/N\) is a presentation of a group \(G\), there is a natural way to turn the abelianisation of \(N\) into a \(\mathbb ZG\)-module, known as the relation module of the presentation. The images of normal generators for \(N\) yield \(\mathbb ZG\)-module generators of the relation module, but 'lifting' \(\mathbb ZG\)-generators to normal generators cannot always be done by a result of Dunwoody. Nevertheless, it is an open problem, known as the relation gap problem, whether the relation module can have strictly fewer \(\mathbb ZG\)-module generators than \(N\) can have normal generators when \(G\) is finitely presented. In this talk I will survey what is known and what is not known about this problem and its variations and discuss some recent progress for groups with a cyclic relation module.

Last updated on 11 Jun 2024, 8:51pm. Please contact us with feedback and comments about this page.