Seminar series
Date
Fri, 21 Jun 2024
13:30
Location
Lecture Room 6
Speaker
Luis Jorge Sánchez Saldaña, Rachael Boyd, Mladen Bestvina
Organisation
University of Oxford

Dimensions of mapping class groups of orientable and non-orientable surfaces

1:30pm

Luis Jorge Sánchez Saldaña (UNAM)

Mapping class groups have been studied extensively for several decades. Still in these days these groups keep being studied from several point of views. In this talk I will talk about several notions of dimension that have been computed (and some that are not yet known) for mapping class groups of both orientable and non-orientable manifolds. Among the dimensions that I will mention are the virtual cohomological dimension, the proper geometric dimension, the virtually cyclic dimension and the virtually abelian dimension. Some of the results presented are in collaboration with several colleagues: Trujillo-Negrete, Hidber, León Álvarez and Jimaénez Rolland.

--

Diffeomorphisms of reducible 3-manifolds

2:45pm

Rachael Boyd (Glasgow)

I will talk about joint work with Corey Bregman and Jan Steinebrunner, in which we study the moduli space B Diff(M), for M a compact, connected, reducible 3-manifold. We prove that when M is orientable and has non-empty boundary, B Diff(M rel ∂M) has the homotopy type of a finite CW-complex. This was conjectured by Kontsevich and previously proved in the case where M is irreducible by Hatcher and McCullough.

--

Nonunique ergodicity in strata of geodesic laminations and the boundary of Outer space

4:00pm

Mladen Bestvina (Utah)

It follows from the work of Gabai and Lenzhen-Masur that the maximal number of projectively distinct ergodic transverse measures on a filling geodesic lamination on a hyperbolic surface is equal to the number of curves in a pants decomposition. In a joint work with Jon Chaika and Sebastian Hensel, we answer the analogous question when the lamination is restricted to have specified polygons as complementary components. If there is enough time, I will also talk about the joint work with Elizabeth Field and Sanghoon Kwak where we consider the question of the maximal number of projectively distinct ergodic length functions on a given arational tree on the boundary of Culler-Vogtmann's Outer space of a free group.
 

Last updated on 25 May 2024, 7:51pm. Please contact us with feedback and comments about this page.