Date
Mon, 10 Nov 2008
14:15
Location
L3
Speaker
Thomas Schick
Organisation
Goettingen

Let M be a closed spin manifold.

Gromov and Lawson have shown that the presence of certain "enlargeable"

submanifolds of codimension 2 is an obstruction to the existence of a Riemannian metric with positive scalar curvature on M.

In joint work with Hanke, we refine the geoemtric condition of

"enlargeability": it suffices that a K-theoretic index obstruction of the submanifold doesn't vanish.

A "folk conjecture" asserts that all index type obstructions to positive scalar curvature should be read off from the corresponding index for the ambient manifold M (this this is equivalent to a small part of the strong Novikov conjecture). We address this question for the obstruction above and discuss partial results.

Last updated on 3 Apr 2022, 1:32am. Please contact us with feedback and comments about this page.