Seminar series
Date
Fri, 07 Jun 2024
Time
16:00 - 17:00
Location
L1
Speaker
Prof Jerome Neufeld
Organisation
University of Cambridge

The response of the Greenland and Antarctic ice sheets to a changing climate is one of the largest sources of uncertainty in future sea level predictions.  The behaviour of the subglacial environment, where ice meets hard rock or soft sediment, is a key determinant in the flux of ice towards the ocean, and hence the loss of ice over time.  Predicting how ice sheets respond on a range of timescales brings together mathematical models of the elastic and viscous response of the ice, subglacial sediment and water and is a rich playground where the simplified models of the contact between ice, rock and ocean can shed light on very large scale questions.  In this talk we’ll see how these simplified models can make sense of a variety of field and laboratory data in order to understand the dynamical phenomena controlling the transient response of large ice sheets.

 

Further Information

Jerome A. Neufeld

Professor of Earth and Planetary Fluid Dynamics
Centre for Environmental and Industrial Flows
Department of Earth Sciences
Department of Applied Mathematics and Theoretical Physics
University of Cambridge
 

Research interests: The research in the Earth and Planetary Fluid Dynamics group focuses on using mathematical models and laboratory experiments to understand the fluid behaviour of the Earth and other planetary bodies. Current research interests include the consequences of subglacial hydrology on supraglacial lake drainage and the tidal modulation of ice streams, the solidification of magma oceans and the early generation of magnetic fields on planetary bodies, the erosive dynamics of idealised river systems, the emplacement and solidification of magmatic flows, viscous tectonic mountain building, and the general fluid dynamics of geological carbon storage.

Last updated on 7 Jun 2024, 1:29pm. Please contact us with feedback and comments about this page.