Seminar series
Date
Tue, 22 Oct 2024
15:00
Location
L6
Speaker
Pablo Sanchez Peralta

The study of the rationality of the $L^2$-Betti numbers of a countable group has led to the development of a rich theory in $L^2$-homology with deep implications in structural properties of the groups. For decades almost nothing has been known about the general question of whether the strong Atiyah conjecture passes to free products of groups or not. In this talk, we will confirm that the strong and algebraic Atiyah conjectures are stable under the graph of groups construction provided that the edge groups are finite. Moreover, we shall see that in this case the $\ast$-regular closure of the group algebra is precisely a universal localization of the associated graph of rings

Last updated on 10 Oct 2024, 3:40pm. Please contact us with feedback and comments about this page.